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1 Introduction

A constrained lasso problem is defined as a normal lasso problem with linear equality and inequality
constraints (James et al., 2013; Gaines et al., 2018):

minimize 1
2 ||y− Xβ||22 + ρ||β||1

subject to Aβ = b and Cβ ≤ d, (1)

where y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix of covariates, β ∈ Rp is
the parameter vector we are interested in, and ρ ≥ 0 is a tuning parameter controlling the degree
of penalty. The constraints can represent the prior knowledge on parameters in practice. For
example, we may expect all the coefficients are positive, or all the coefficients are summed up to
one, or the coefficients are in an increasing order. These constraints are natural and common in
real data analysis(Wu et al., 2001) and thus the constrained lasso problem attracts great attention
in recent research (James et al., 2013; Hu et al., 2015; He, 2011). Moreover, constrained lasso can
also be considered as an extended version of generalized lasso (minimize 1

2 ||y− Xβ||
2
2 + ρ||Dβ||1)

proposed by Tibshirani et al. (2011) since any generalized lasso problem can be transformed to
a constrained lasso problem(Gaines et al., 2018). Therefore, constraint lasso can provide a more
flexible framework for data analysis.

Gaines et al. (2018) derive three different algorithms (quadratic programming, ADMM and
path algorithms) for the constrained lasso problem and conducted simulations suggesting the path
algorithm outperform the other two algorithms in terms of the running time and sensitivity to the
tuning parameter. I will mainly focus on adding more details on the path algorithm derivation,
commenting on its merits and points of confusion, and discussing possible extensions.

2 Path Algorithm

The solution of the constrained lasso problem depends on the values of tuning parameters. Specif-
ically, the solution path is a piecewise linear function of ρ, with a change happening whenever
one of the four events happens: (i) an active coefficient hits 0; (ii) An inactive coefficient becomes
active; (iii) A strict inequality constraint hits the boundary; (iv) An inequality constraint escapes
the boundary. This behavior allows for a computation ease since we only need to consider the
optimization problem on a subset of parameters and interpolated the solution between each kinks
along the path. We keep track of two sets A = {j : βj 6= 0}, ZI = {l : cTl β = dl}. The algorithm is
as follows:
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Initial: k = 0, ρ0 = ρmax, β0,A0,Z0I
While ρk > 0:

• Compute a solution at ρk by any optimization method.

• Compute hitting time for event (i) and (iii), denoted as hk+1,i and hk+1,iii.

• Compute leaving time for event (ii) and (iv), denote as lk+1,ii and lk+1,iv.

• Set ρk+1 = max{hk+1,i, lk+1,ii, hk+1,iii, lk+1,iv}.
If hk+1,i < lk+1,ii, add the hitting coordinate to A, otherwise, remove it from A.
If hk+1,ii < lk+1,iv, add the hitting coordinate to ZI, otherwise, remove it from ZI.
Set k = k+ 1.

This algorithm is derived via Karush-kuhn-Tucker (KKT) optimality conditions. We first derive
the Lagrangian of the constrained lasso problem:

L(β, ρ, λ, µ) =
1

2
||y− Xβ||22 + ρ||β||1 + λ

T (Aβ− b) + µT (Cβ− d)

By taking the derivative with respect to β, we obtain the stationary condition

−XT (y− Xβ(ρ)) + ρs(ρ) +ATλ(ρ) + CTµ(ρ) = 0 (2)

where s(ρ) is the subgradient ∂||β||1
Other necessary conditions are:

(primal feasibility) Cβ ≤ d, Aβ = b
(dual feasibility) µi ≥ 0

(complementary slackness) µi(Cβ− d)i = 0 (3)

From the stationary condition, we can prove the solution path is piecewise linear. Notice we
only need to track the coordinate in the set A,ZI, we obtain the following stationary condition:

−XT:,A(y− Xβ(ρ)) + ρs(ρ) +AT:,Aλ(ρ) + C
T
ZI,Aµ(ρ)ZI

= 0|A| (4)

By applying implicit function theorem, we have

d

dρ

βAλ
µZI

 = −

XT :,AX:,A AT:,A CTZI,A
A:,A 0 0

CZI,A 0 0

−1sA0
0


If the set A,ZI remains unchanged, the derivation is a constant, denoting the piecewise linearity

of the solution path. The complementary slackness (equation (3)) defined the set ZI.
To obtain the next changing time ρk+1, instead of directly calculating hitting time and leaving

time, consider solving a constrained optimization problem:

minimize ∆ρ

subject to any of the following constraints :

β
(k+1)
A = β

(k)
A − ∆ρ ddρβ

(k)
A = 0|A|

ρ(k+1)s
(k+1)
Ac = ρ(k)s

(k)
Ac − ∆ρ(ρsAc) = ±(ρ(k) − ∆ρ)1|Ac|

r
(k+1)
Zc

I
= r

(k)
Zc

I
− ∆ρ ddρrZc

I
= 0|Zc

I |

µk+1ZI
= µkZI

− ∆ρ ddρµZI
= 0|ZI|,
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where ∆ρ := ρk+1 − ρk, and rZc
I
:= CZc

I ,AβA − dZc
I

represents the inequality residuals. The
four constraints correspond to four possible events that may cause kinks in the solution path. It is
worth noting that all these derivatives removes linearly with the gradient.

For the initialization, consider ρ = ∞, L1-penalty will dominate the objective function of
constrained lasso problem as follows:

minimize ||β||1
subject to Aβ = b and Cβ ≤ d,

Solve the above problem, we can obtain the initial β0,A0,Z0I and Lagrange multiplier λ0, µ0.
Pluging these values into the stationary condition (2), we can obtain initial value for ρ as follows:

ρmax = max|xTj (y− Xβ0 −AT:,j)λ
0 − CTZI,j

µ0ZI
|.

3 Discussion

The great advantage of the path algorithm is its computation efficiency due to the piecewise linearity
and partial parameter updating. First, the solution path of constrained lasso is piecewise linear
of the tuning parameter, allowing for only solving the solution at the kinks and then applying
an interpolation between these kinks. The piecewise linearity reduce the continuous space of ρ
to a space includes only a few points, which greatly eases the computation. Second, the solution
computation at each time k only involves a subset of the data (within the set A and ZI), which
greatly eases the dimension and is scalable for problems with large dimension for parameter space.

There are three possible extensions that may be interesting. Firstly, we can consider extending
the linear constraints to nonlinear constraints. In natural science, decision science and experimental
science, the theoretical constraints may take a nonlinear form. If we consider a nonlinear constrained
lasso problem, although KKT conditions still hold, the piecewise linearity of the solution path and
the linearity of the gradients when solving the changing time may not hold. In order to inherit
the merits of the path algorithm, a possible solution can be using a piecewise linear function to
approximate the nonlinear function. Probably we can adopt Majority Maximization idea in the
approximation to obtain similar convergence result.

Secondly, we can consider extending the regression to a tensor regression, where we extend
β ∈ Rp×1 to β ∈ Rp×m,m ≥ 1. For example, researchers may be interested in disease diagnosis
from medical imaging data. It may be important to keep several important patterns while denoising
an image. Since we still has a linear regression with linear constraints, the piecewise linearity of
solution path still hold in this case. If we draw an analogy to the path algorithm for 2D fused lasso
proposed by Tibshirani et al. (2011), for such extension, we may only need to trace occurrence of
more events which can be derived from KKT conditions.

Thirdly, we may consider a Bayesian constrained lasso model by imposing the constraints on
the prior. Park and Casella (2008) and Hans (2010) propose Bayesian version of the lasso by
introducing a double exponential prior on the coefficients:

Y|α,βs, φ ∼ N(1nα+ Xsβs, In/φ)
βs|α,φ, τ ∼ N(0, diag(τ2)/φ)
τ21, ..., τ

2
p ∼ Exp(λ2/2)(iid)

p(α,φ) ∝ 1/φ

which induces a double exponential prior for β: βj|φ, λ ∼ DE(λ
√
φ)(iid). Other alternative

scale mixtures prior are proposed, such as horseshoe prior (Carvalho et al., 2010) and generalized
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double Pareto prior (Armagan et al., 2013). An extension allowing for constraints seems natural
in Bayesian framework. For example, if we want to restrict all coefficients greater than zero, we
may consider a normal prior on β truncated to (0,∞). If we want to restrict coefficients sum up
to 1, we may consider a Dirichlet prior. However, Frequentists’ lasso outperforms Bayesian lasso
in terms of computation efficiency.
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