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Motivation

* Product sales/demand forecasting
* Meaningful for inventory management/production planning/...

e
Ticinella

Features:

* Multiple time granularities
* Many individual products
e Across multiple outlets

Ideal Modaels:

Efficient
Effective
Flexible

Scalable




Decouple/Recouple Idea

- Decouple: Product-level model (univariate DCMMs) * Challenges
- parallel computation * Model
- Flexible to handle features DGLM -> DCMM -> DCMM + RE

- Effective and efficient computationally

Motivations
Idea: Random effect model
Analysis framework

- Recouple: multivariate forecasting framework
- Integration across potentially many products
- Scalability to large-scale problems




Features of Product-level Data and Challenges

Nonnegative counts
Seasonality, holiday, price/promotion, ...

High-frequency: High variability + extreme values (across time and products) -> overdispersion
Fine-scale resolution: many O’s (intermittent demand) and low counts -> Main issue

Figure 7. Daily unit sales (in counts per day) of four spaghetti items A-D in one store from July 22, 2009 to October 29, 2011.

Table 1. Some summaries of daily pasta sales data by item.

[tem Mean Median Variance % 0 sales
A 1.0 0 1.8 51.8
B 9.9 9 294 15
& 4.7 4 15.6 5.9
D 34 2 10.6 14.4




Dynamic Count Mixture Models (DCMMs)
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Dynamic Generalized Linear Models (DGLMs)
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Maintain pros of DGLMs

Flexibility:
- Allowing different FO and F+
- Varying freq of 0 sales across items and over time

Overdispersion ? -> DCMMs + random effect (discount factor)
Dynamic Count Mixture Models (DCMMs)
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DCMM Random Effects Extension

e Overdispersion -> underestimate uncertainty
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* Close to 0: increased dispersion
* Setto 1: Poisson DGLM



Motivation for Multivariate Forecasting
* Information sharing:
e product family, brand and store
location
similar trends or seasonal

patterns
* aggregated level: more accurate

and less noisy

mmm) pasta + ?
* Important for sporadic data:
nonnegligible Os and low count

more evident seasonality for

high level sales items
* gain more accurate predict for

D
sporadic data
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Figure 7. Daily unit sales (in counts per day) of four spaghetti items A-D in one store from July 22, 2009 to October 29, 2011.



Multivariate Forecasting Framework (Top-down Recoupling)
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erformance of DCMMs
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Figure 7. Daily unit sales (in counts per day) of four spaghetti ittms A-D in one store from July 22, 2009 to October 29, 2011.
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Figure 1. Data and aspects of 1-step ahead forecast distributions for items A (upper) and B (lower). Shading: 80% predictive credible intervals;

full line: predictive mean.



Performance of DCMMs
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Figure 2. Coverage plots for items A (left) and B (right) from 1-, 7-, and 14-day ahead forecasts.

Empirical coverage over
the full year of forecasting for HPD ClI

* |deal: close to the line

* A:slight over-coverage

* B: evident under-coverage
(infrequent higher sales)



Performance of DCMMs
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Figure 3. Randomized PIT plots from 1-day ahead forecasting of items A (left) and B (right). Full line: ordered randomized PIT values;
dashed: 45° line.



DCMMs+RE improved DCMMs
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Figure 6. Empirical coverage plot (left) and randomized PIT plot (right) for 1-day ahead forecasting of item B using the DCMM with random
effects extension. Compare with the results under the basic DCMM in the right-hand frames of Figures 2 and 3.



Multivariate DCMMs improved univariate DCMMs
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Figure 8. Mean absolute deviation (MAD) versus forecast horizon (days) for items A-D from the multiscale (orange circles) and benchmark
(blue triangles) models.
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Figure 9. Mean rank probability score (MRPS) versus forecast horizon (days) for items A-D from the multiscale (orange circles) and
benchmark (blue triangles) models.
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