Testing Poisson versus Poisson mixtures with application to neuroscience

Yunran Chen Surya Tapas Tokdar

Department of Statistical Science, Duke University Durham, North Carolina, USA

AISC, 2018

(ロ)
 (日)
 (日)

Outline

Introduction

- Background
- Poisson and Poisson mixture
- 2 Testing Poisson versus Poisson mixture
 - Hypothesis Testing
 - Bayes Factor
 - Estimate $P(Y|M_1)$: PRML algorithm
 - Estimate $P(Y|M_0)$
- 3 Comparison
 - Pearson χ^2 goodness of fit test
 - Simulation Result
 - 4 Testing between different Poisson mixtures
 - Hypothesis Testing
 - Estimate $P(Y|M_i)$: PRMLG-LP algorithm
 - Simulation Result

Background Poisson and Poisson mixture

Background Non-Poisson behavior

- In neuroscience, spike counts are usually modeled as Poisson distribution for simplicity.
- Non-Poisson behavior is to be expected and has been documented under many situations.¹
 - The stimuli or the internal state of the subject may change over time and vary from trial to trial.
 - "refractory period"
- Poisson mixtures attract increasing attention.
 - It can be seen as a generalized version of Poisson distribution.
 - It offers a rich class of alternatives to the Poisson distribution.

1. Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.

Background Poisson and Poisson mixture

Background Non-Poisson behavior

- In neuroscience, spike counts are usually modeled as Poisson distribution for simplicity.
- Non-Poisson behavior is to be expected and has been documented under many situations.¹
 - The stimuli or the internal state of the subject may change over time and vary from trial to trial.
 - "refractory period"
- Poisson mixtures attract increasing attention.
 - It can be seen as a generalized version of Poisson distribution.
 - It offers a rich class of alternatives to the Poisson distribution.

1. Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.

Background Poisson and Poisson mixture

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ^2 test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

2. Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2011,98(3); 567,582.

Background Poisson and Poisson mixture

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ^2 test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

2. Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2011,98(3); 567,582.

Background Poisson and Poisson mixture

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ² test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

^{2.} Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2011, 98(3): 567-582.

Background Poisson and Poisson mixture

Poisson and Poisson mixture

Poisson

$$Y_i \stackrel{i.i.d}{\sim} Poi(\mu), \mu \in (\mu_I, \mu_u)$$

Poisson mixture

$$Y_i \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu, support(f) = (\mu_l, \mu_u)$$

Or

$$Y_i \stackrel{i.i.d}{\sim} Poi(\mu_i), \mu_i \stackrel{i.i.d}{\sim} f$$

- A generalized version of Poisson distribution
- A rich class of alternatives to the Poisson distribution
- An overdispersion model

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Hypothesis Testing

Consider the data Y_i for i = 1, ..., n,

- $H_0: Y_i \overset{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_u)$
- $H_1: Y_i \stackrel{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_u)$

Methods

- Bayes Factor : <u>P(Y|M_0)</u> PRML algorithm
- p value : χ^2 goodness of fit test

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor : Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence
1 to 3	not worth more than a bare mention
3 to 20	positive
20 to 150	strong
>150	very strong

Calculating marginal likelihood $P(Y|M_0)$, $P(Y|M_1)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor : Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence		
1 to 3	not worth more than a bare mention		
3 to 20	positive		
20 to 150	strong		
>150	very strong		

Calculating marginal likelihood $P(Y|M_0)$, $P(Y|M_1)$, $P(Y|M_1)$, $P(Y|M_1)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor : Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence		
1 to 3	not worth more than a bare mention		
3 to 20	positive		
20 to 150	strong		
>150	very strong		

Calculating marginal likelihood $P(Y|M_0), P(Y|M_1)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Marginal likelihood approximation

$P(Y|M_0)$

- $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_u)$
- Setting a prior and integrate out the parameter.
- If it is hard to get integral, we can apply Laplace approximation.

$P(Y|M_1)$

• $H_1: Y_i \stackrel{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_U)$

• Applying predictive recursion marginal likelihood (PRML) algorithm.

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Marginal likelihood approximation

$P(Y|M_0)$

- $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_u)$
- Setting a prior and integrate out the parameter.
- If it is hard to get integral, we can apply Laplace approximation.

$P(Y|M_1)$

• $H_1: Y_i \stackrel{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_u)$

 Applying predictive recursion marginal likelihood (PRML) algorithm.

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML algorithm : Restate the problem Estimate $P(Y|M_1)$

Calculate

$$p(Y|M_1) = \int p(Y|\mu) f(\mu) d\mu$$

Known :

- Likelihood Function : Poisson $p(Y|\mu)$
- support of $f(\cdot)$

Unknown :

• Mixture density $f(\mu)$

Mixture model density estimation : PRML

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML algorithm Estimate $P(Y|M_1)$

Calculate $p(Y|M_1) = \int p(Y|\mu)f(\mu)d\mu$

Predictive recursion (PR) is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture model.

Required information :

- $p(Y|\mu)$ known Poisson;
- support and continuity properties Model assumptions. Pass the information via f_0 in initialization and $m_f(y)$ in integral.

Output

Estimation on f(μ)

• Estimation on marginal likelihood $p(Y|M_1)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML Algorithm Estimate $P(Y|M_1)$

 $p(Y|M_1) = \int p(Y|\mu) f(\mu) d\mu$

Input : i.i.d observations $Y_1, ..., Y_n$ Output : $L = \prod_{i=1}^n m_i(y)$ Initialize : $f_0(\mu)$ - Usually uniformly distributed on the support. $w_1, ..., w_n \in (0, 1) - w_i = \frac{1}{1+i}$; $\sum_{i=1}^{\infty} w_i = \infty$, $\sum_{i=1}^{\infty} w_i^2 < \infty$ For i = 1,...,n :

$$m_i(y) = \int p(Y_i|\mu) f_{i-1}(\mu) d\mu = \sum_{k=1}^m s_k p(Y_i|\mu_k) f_{i-1}(\mu_k)$$

 $f_{i}(\mu) = (1 - w_{i})f_{i-1}(\mu) + w_{i}p(Y_{i}|\mu)f_{i-1}(\mu)/m_{i}(y)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML Algorithm Estimate $P(Y|M_1)$

$$p(Y|M_1) = \int p(Y|\mu) f(\mu) d\mu$$

Input: i.i.d observations $Y_1, ..., Y_n$ **Output**: $L = \prod_{i=1}^n m_i(y)$ **Initialize**: $f_0(\mu)$ - Usually uniformly distributed on the support. $w_1, ..., w_n \in (0, 1) - w_i = \frac{1}{1+i}; \sum_{i=1}^{\infty} w_i = \infty, \sum_{i=1}^{\infty} w_i^2 < \infty$ **For i = 1,...,n**:

$$m_i(y) = \int p(Y_i|\mu) f_{i-1}(\mu) d\mu = \sum_{k=1}^m s_k p(Y_i|\mu_k) f_{i-1}(\mu_k)$$

 $f_{i}(\mu) = (1 - w_{i})f_{i-1}(\mu) + w_{i}p(Y_{i}|\mu)f_{i-1}(\mu)/m_{i}(y)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML Algorithm Estimate $P(Y|M_1)$

$$p(Y|M_1) = \int p(Y|\mu) f(\mu) d\mu$$

Input: i.i.d observations $Y_1, ..., Y_n$ **Output**: $L = \prod_{i=1}^n m_i(y)$ **Initialize**: $f_0(\mu)$ - Usually uniformly distributed on the support. $w_1, ..., w_n \in (0, 1) - w_i = \frac{1}{1+i}; \sum_{i=1}^{\infty} w_i = \infty, \sum_{i=1}^{\infty} w_i^2 < \infty$ **For i = 1,...,n**:

$$m_i(y) = \int p(Y_i|\mu) f_{i-1}(\mu) d\mu = \sum_{k=1}^m s_k p(Y_i|\mu_k) f_{i-1}(\mu_k)$$

 $f_{i}(\mu) = (1 - w_{i})f_{i-1}(\mu) + w_{i}p(Y_{i}|\mu)f_{i-1}(\mu)/m_{i}(y)$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

PRML Algorithm : Permutation Version Estimate $P(Y|M_1)$

- 1 dataset \rightarrow 1 estimator L
- 1 dataset \rightarrow shuffle \rightarrow 10 datasets \rightarrow 10 estimator $L_1, ..., L_{10} \rightarrow$ average $\rightarrow L_p$

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Estimate $P(Y|M_0)$

Consider

$$p(Y|M_0) = \int p(Y|\mu)f(\mu)d\mu$$

Setting a prior and integrate out the parameter.

- Uniform prior : $Unif[\mu_I, \mu_u]$
- $\int_{\mu_l}^{\mu_u} \prod_{i=1}^n dpoi(Y_i|\mu) \times \frac{1}{\mu_u \mu_l} d\mu$
- For unknown μ_I , μ_u , use robust estimator
 - $\hat{\mu}_I = Y_{0.25} \alpha \times IQR$
 - $\hat{\mu}_u = Y_{0.75} + \alpha \times IQR$
 - $IQR = Y_{0.75} Y_{0.25}$
 - Simulation shows the performance of PRML is not sensitive to parameter α

Hypothesis Testing Bayes Factor Estimate $P(Y|M_1)$: PRML algorithm Estimate $P(Y|M_0)$

Estimate $P(Y|M_0)$

Consider

$$p(Y|M_0) = \int p(Y|\mu)f(\mu)d\mu$$

• Setting a prior and integrate out the parameter.

- Uniform prior : $Unif[\mu_I, \mu_u]$
- $\int_{\mu_l}^{\mu_u} \prod_{i=1}^n dpoi(Y_i|\mu) \times \frac{1}{\mu_u \mu_l} d\mu$
- For unknown μ_I , μ_u , use robust estimator

•
$$\hat{\mu}_I = Y_{0.25} - \alpha \times IQR$$

- $\hat{\mu}_u = Y_{0.75} + \alpha \times IQR$
- $IQR = Y_{0.75} Y_{0.25}$
- Simulation shows the performance of PRML is not sensitive to parameter α

Pearson χ^2 goodness of fit test Simulation Result

Pearson χ^2 goodness of fit test

•
$$H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\mu)$$
 for $\mu \in (\mu_l, \mu_u)$
• $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\hat{\mu})$
• $X = \sum_i \frac{(O_i - E_i)^2}{E_i}$

•
$$X \sim \chi^2_{df}$$

approximate X using Monte Carlo p-value calculation

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Testing Poisson versus Poisson mixtures

Testing Poisson versus Poisson mixture

 $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(240)$

 $H_1: Y_i \overset{i.i.d}{\sim} \int_{150}^{300} Poi(\mu) gamma_{[150,300]}(\mu|480,2) d\mu$

• Generate datasets with size N = 200, half comes from Poisson and half comes from Poisson mixture.

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Testing Poisson versus Poisson mixtures

FIGURE – Plots of the AUC. x-axis indicates different sample size n = 25, 50, 100. Different colors indicate different methods. Different shapes of the point indicate different value for α .

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Testing Poisson versus Poisson mixtures

- PRML, PPRML testing perform much better than tradition χ^2 test
- As sample size increases, the performance improves.
- PPRML is much stable than PRML testing.

Comments

Traditional testing procedure based on p-value sets too general alternative hypothesis containing too large "model space", leading to a conservative decision, or we say a loss of power (or sensitivity).

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Poisson versus Poisson mixed with normal

Testing Poisson versus Poisson mixed with normal

$$H_0: Y_i \overset{i.i.d}{\sim} Poi(240)$$

$$H_1: Y_i \stackrel{i.i.d}{\sim} 0.9 Poi(240) + 0.1 N_{[0,\infty)}(240, \sigma^2)$$

• Generate datasets with size N = 200, half comes from Poisson and half comes from Poisson mixed with normal.

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Poisson versus Poisson mixed with normal

FIGURE – Plots of the AUC. Different panels indicate different sample size *n*. Different colors indicate different methods. Different shapes of the point indicate different value for α .

Pearson χ^2 goodness of fit test Simulation Result

Simulation Result Poisson versus Poisson mixed with normal

- For σ ≤ 15, PRML, PPRML testing perform much worse than Pearson χ² testing. For σ > 15, PRML, PPRML testing perform better than Pearson χ² testing.
- As σ increase, the performances of PRML, PPRML testing improve.
- $\sigma < \sqrt{240} (\approx 15.5)$ underdispersion model

Comments

When the alternative model is mis-specified (underdispersion model), PRML, PPRML testing on Poisson versus Poisson mixtures is not applicable.

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Hypothesis Testing

۲

- $Y_j^A \stackrel{i.i.d}{\sim} Poi(\mu^A), \ Y_j^B \stackrel{i.i.d}{\sim} Poi(\mu^B)$ for unknown μ^A, μ^B
- - M_1 (Mixture) : for unknown $\mu \in \{\mu^A, \mu^B\}$
 - M_2 (Intermediate) : for unknown $\mu \in (min(\mu^A, \mu^B), max(\mu^A, \mu^B))$
 - *M*₃(Outside) : for unknown μ ∈ [μ₁, min(μ^A, μ^B)) or μ ∈ (max(μ^A, μ^B), μ_u], where known μ₁, μ_u indicate the lower bound and upper bound of μ respectively.
 - M_4 (Single) : for $\mu = \mu^A$ or $\mu = \mu^B$
- Our goal : Choosing the best fit model.

 $BF_{12} = \frac{P(Y^{AB}|M_i)}{P(Y^{AB}|M_j)}$

Introduction Testing Poisson versus Poisson mixture Comparison

Testing between different Poisson mixtures

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Four competitive scenarios

FIGURE – Four possible types of Poisson mixtures which spike counts may exhibit ³

3. Caruso V C, Mohl J T, Glynn C, et al. Single neurons may encode simultaneous stimuli by switching between activity patterns[J]. Nature communications, 2018, 9(1) : 2715.

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Known and Unknown

Known :

- Triplets Data : Y^A, Y^B, Y^{AB}
- Likelihood Function : Poisson $p(Y^A|\mu^A), p(Y^B|\mu^B), p(Y^{AB}|\mu^{AB})$
- Relationship on support between $\mu^{A}, \mu^{B}, \mu^{AB}$
 - Mixture : μ^{AB} ∈ {μ^A, μ^B}
 Intermediate : μ^{AB} ∈ (μ_{min}, μ_{max})
 Outside : μ^{AB} ∈ [μ_I, μ_{min}) or μ^{AB} ∈ (μ_{max}, μ_u]
 Single μ^{AB} = μ^A or μ^{AB} = μ^B

Unknown :

- Parameters : μ^A , μ^B , μ^{AB}
- Mixture density $f(\mu^{AB}|\mu^{A},\mu^{B})$

Goal : Marginal likelihood

$$p(Y^{AB}|M, Y^{A}, Y^{B}) = \int_{\Theta} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(Y^{A}|\theta, M) p(\theta|Y^{A}, Y^{A}) d\theta_{X^{A}} = \sum_{\substack{a \in A \\ 23/37}} p(Y^{A}|\theta, M) p(Y^{A}$$

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$: Laplace Approximation

$$\begin{split} p(Y^{AB}|M, Y^{A}, Y^{B}) &= \int_{\Theta} p(Y^{AB}|\theta, M) p(\theta|Y^{A}, Y^{B}) d\theta \\ &= \int_{\Theta} \int p(Y^{AB}|\mu^{AB}) f(\mu^{AB}|\theta) d\mu^{AB} p(\theta|Y^{A}, Y^{B}) d\theta \\ &\approx (2\pi)^{k/2} |\hat{\Sigma}|^{1/2} p(Y^{AB}|M, \hat{\theta}) p(\hat{\theta}|Y^{A}, Y^{B}) \end{split}$$

With Laplace approximation, we have

$$p(Y^{AB}|M, Y^{A}, Y^{B}) \approx \frac{p(Y^{AB}|M, \hat{\theta})p(\hat{\theta}|Y^{A}, Y^{B})}{N(\hat{\theta}|\hat{\theta}, \hat{\Sigma})}$$

where $k = dim(\theta)$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \log p(Y^{AB}|M, \theta) p(\theta|Y^{A}, Y^{B})$$

$$\hat{\Sigma} = \{-\nabla^{2} \log p(Y^{AB}|M, \theta) p(\theta|Y^{A}, Y^{B})|_{\theta = \hat{\theta}}\}^{-1}$$

$$\sum_{\substack{\theta = 0 \\ 24/37}} \sum_{\alpha = 0}^{2} \sum_{\beta = 0}^{2} \sum_{\alpha = 0}^{2} \sum_{\beta = 0}^{2} \sum_{\alpha = 0}^{2} \sum_{\beta = 0}^{2} \sum_{\alpha = 0}^{2} \sum_{$$

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$: optimization problem

Object function : $I(\theta) = logp(Y^{AB}|M, \theta)p(\theta|Y^A, Y^B)$ Hessian Matrix : $H = \nabla^2 I(\theta)$ Marginal likelihood estimator :

$$p(Y^{AB}|M, Y^A, Y^B) \approx (2\pi)^{k/2} |-H|^{1/2} e^{I(\hat{\theta})}$$

- If we provide the gradient ∇*l*(μ^A, μ^B), the computation could be eased a lot.
- PRML gradient algorithm (PRMLG) : calculate gradient in each recursion without significant computation increase.

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$:PRMLG algorithm

 $p(Y^{AB}|\mu^{A}, \mu^{B}, M) = \int p(Y^{AB}|\mu^{AB}) f(\mu^{AB}|\mu^{A}, \mu^{B}) d\mu^{AB}$ Input : i.i.d observations $Y_{1}, ..., Y_{n}$ Output : $logL = \sum_{i=1}^{n} logm_{i}(y), \nabla logL = \sum_{i=1}^{n} \nabla logm_{i,\theta}(Y_{i})$ Initialize : $f_{0}(\mu^{AB}|\mu^{A}, \mu^{B}), \nabla f_{0,\theta}$, weights $w_{1}, ..., w_{n} \in (0, 1)$ For i = 1,...,n :

$$m_i(\mathbf{y}) = \int p(\mathbf{Y}_i^{AB} | \mu^{AB}) f_{i-1}(\mu^{AB}) d\mu^{AB}$$

$$f_{i}(\mu^{AB}) = (1 - w_{i})f_{i-1}(\mu^{AB}) + w_{i}p(Y_{i}^{AB}|\mu^{AB})f_{i-1}(\mu^{AB})/m_{i}(y)$$
$$\nabla logm_{i,\theta}(Y_{i}) = \int G(\theta, u)d\mu(u)/m_{i,\theta}(Y_{i})$$

 $\nabla f_{i,\theta}(u) = (1 - w_i) \nabla f_{i-1,\theta}(u) + w_i \frac{G(\theta, u) - p(Y_i|\theta, u) f_{i-1,\theta}(u) \nabla \log m_{i,\theta}(u)}{m_{i,\theta}(Y_i)}$

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$: specify $p(Y^{AB}|M,\theta) - PRML$

support and continuity properties - Model assumptions.

	1		
Model	Support	f ₀	$m_f(y)$
Mixture	$\{\mu^A, \mu^B\}$	(0.5, 0.5)	$\sum_{A,B} p(Y_i^{AB} \mu^{AB}) f_{i-1}(\mu')$
Intermediate	$(\mu_{\textit{min}},\mu_{\textit{max}})$	$Unif(\mu_{min},\mu_{max})$	$\int_{\mu_{min}}^{\mu_{max}} p(Y_i^{AB} \mu') f_{i-1}(\mu') d\mu'$
OutsideA	(μ_I, μ_{min})	$\mathit{Unif}(\mu_I,\mu_{\mathit{min}})$	$\int_{\mu_i}^{\mu_{min}} p(Y_i^{AB} \mu') f_{i-1}(\mu') d\mu'$
OutsideB	(μ_{max},μ_u)	$Unif(\mu_{min},\mu_u)$	$\int_{\mu_{max}}^{\mu_{u}} p(Y_{i}^{AB} \mu') f_{i-1}(\mu') d\mu'$
SingleA	$\{\mu^{A}\}$	1	$p(Y_i^{AB} \mu^{AB})f_{i-1}(\mu^A)$
SingleB	$\{\mu^B\}$	1	$p(Y_i^{AB} \mu^{AB})f_{i-1}(\mu^B)$

TABLE – PRML setting under different model assumptions

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$: Reparameterization

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{ 0 , 1 }
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[0, 1]
OutsideA	$\mu^{AB} = h(z) = \mu_I + z(\mu^A - \mu_I)$	[0, 1]
OutsideB	$\mu^{AB} = h(z) = \mu^B + z(\mu_u - \mu_B)$	[0, 1]

TABLE – Reparameterization for PRMLG algorithm

Model	Restriction	Reparameterization
Mixture	$\mu^{A}, \mu^{B} > 0$	$\theta = (\log(\mu^A), \log(\mu^B))$
Intermediate	$0 < \mu_{min} < \mu_{max}$	$ heta = (\textit{log}(\mu_{\textit{min}}),\textit{log}(\mu_{\textit{max}}))$
OutsideA	$0 < \mu_I < \mu^{\mathcal{A}}$	$ heta = \textit{log}(\mu^{A} - \mu_{I})$
OutsideB	$0 < \mu^{B} < \mu_{u}$	$\theta = logit(\frac{\mu^{B}}{\mu_{H}})$
SingleA	$\mu^{\mathcal{A}} > 0$	$ heta = log(\mu^{oldsymbol{ar{A}}})$
SingleB	$\mu^{B} > 0$	$ heta = log(\mu^B)$

TABLE – Reparameterization for optimization

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Simulation Setting

Generate N = 100 samples for each model. Set $\mu_A = 150$, $\mu_B = 300$, sample size n = 25, 50.

- Generate $Y^A \sim Poi(\mu^A)$ with $n^A = 1.5n$; $Y^B \sim Poi(\mu^B)$ with $n^B = 1.2n$.
- Generate Y^{AB} with sample size *n*.
 - Mixture : $Y^{AB} \sim \alpha Poi(\mu_A) + (1 \alpha)Poi(\mu_B)$ with $\alpha = 0.5$;
 - Intermediate : $Y^{AB} \sim \int Poi(\mu) Ga_{[180,270]}(\mu|144,0.6) d\mu$;
 - Outside B : generate Y^{AB} ~ Poi(400);
 - Outside A : generate *Y^{AB}* ~ ∫ *Poi*(μ)*Ga*_[30,120](μ|20.25, 0.225)*d*μ.
 - Single A : generate $Y^{AB} \sim Poi(150)$;
 - Single B : generate $Y^{AB} \sim Poi(300)$.

For estimation, consider $\mu_l = 30$, $\mu_u = 600$, nGQ = 20, nP = 100. For PRML-LP, set conjugate prior $r_A = 15$, $s_A = 0.1$, $r_B = 30$, $s_B = 0.1$; initial value $\mu_0^A = 120$, $\mu_0^B = 330$. Introduction Testing Poisson versus Poisson mixture Comparison

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Testing between different Poisson mixtures

Testing between four Poisson mixtures

FIGURE – Bayes Factor with sample size n = 25.

Introduction Testing Poisson versus Poisson mixture Comparison

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Testing between different Poisson mixtures

Testing between four Poisson mixtures

FIGURE – Bayes Factor with sample size n = 50.

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Estimate $P(Y|M_i)$: Introduce parameter *e*

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{0, 1}
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[0, 1]

TABLE – Reparameterization for PRMLG algorithm under e = 0

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{ <i>e</i> , 1 − <i>e</i> }
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[<i>e</i> , 1 – <i>e</i>]

TABLE – Reparameterization for PRMLG algorithm under e

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Effect of parameter e

FIGURE – Bayes Factor sample size n = 25

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Effect of parameter e

FIGURE – Bayes Factor sample size n = 50

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Simulation result

- As **sample size** *n* **increase**, the performances of our proposed testing would get **improved**.
- PRML-LP and PPRML-LP perform as well as the benchmark method. They can identify these four Poisson mixtures with strong evidence except for distinguishing mixture, intermediate and single.
- This is due to the specification of the continuity of the domain of μ.
- With introduce parameter *e* to define mixture and single more clearly, our proposed testing (PRML-LP and PPRML-LP) can distinguish single, mixture and intermediate with **strong evidence** (especially when sample size is large).

Hypothesis Testing Estimate $P(Y|M_i)$: PRMLG-LP algorithm Simulation Result

Conclusion

Pros

- Testing Poisson versus Poisson mixture
- Testing between different Poisson mixtures

Cons

- Misspecification of model
- Choice of *w_i* remains openinng question
- Normality assumption

References I

Martin, Ryan and Tokdar, Surya T,

Semiparametric inference in mixture models with predictive recursion marginal likelihood.

References

Biometrika 98.3 (2011) : 567-582.

Caruso V C, Mohl J T, Glynn C, et al.

Single neurons may encode simultaneous stimuli by switching between activity patterns[J]. Nature communications, 2018, 9(1) : 2715.

Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.