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Background
Poisson and Poisson mixture

Background
Non-Poisson behavior

In neuroscience, spike counts are usually modeled as
Poisson distribution for simplicity.
Non-Poisson behavior is to be expected and has been
documented under many situations. 1

The stimuli or the internal state of the subject may change
over time and vary from trial to trial.
"refractory period"

Poisson mixtures attract increasing attention.
It can be seen as a generalized version of Poisson
distribution.
It offers a rich class of alternatives to the Poisson
distribution.

1. Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of
neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.
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Background
Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures
Unsuitable model assumption may lead to distortion of
inference.
Need to filter out non-Poisson behavior trials.

Traditional testing procedure : χ2 goodness of fit test
Whether χ2 test can give us Poisson-like data?
Is there better method for this?

Bayesian perspective : Predictive recursion marginal
likelihood (PRML) testing 2

Better performance as measured by ROC-AUC
Testing between different types of Poisson mixtures

2. Martin R, Tokdar S T. Semiparametric inference in mixture models with
predictive recursion marginal likelihood[J]. Biometrika, 2011, 98(3) : 567-582.
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Background
Poisson and Poisson mixture

Poisson and Poisson mixture

Poisson

Yi
i.i.d∼ Poi(µ), µ ∈ (µl , µu)

Poisson mixture

Yi
i.i.d∼

∫
Poi(µ)f (µ)dµ, support(f ) = (µl , µu)

Or
Yi

i.i.d∼ Poi(µi), µi
i.i.d∼ f

A generalized version of Poisson distribution
A rich class of alternatives to the Poisson distribution
An overdispersion model
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Hypothesis Testing
Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

Hypothesis Testing

Consider the data Yi for i = 1, ...,n,

H0 : Yi
i.i.d∼ Poi(µ) for unknown µ ∈ (µl , µu)

H1 : Yi
i.i.d∼

∫
Poi(µ)f (µ)dµ where support(f ) = (µl , µu)

Methods

Bayes Factor : P(Y |M0)
P(Y |M1) - PRML algorithm

p value : χ2 goodness of fit test
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Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

Bayes Factor
Bayes Factor= P(Y |M0)/P(Y |M1)

Bayes’ Factor : Ratio of marginal likelihood based on
corresponding model assumption.

BF =
P(Y |M0)

P(Y |M1)

The larger the Bayes’ Factor, the stronger evidence showing
Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF Strength of evidence
1 to 3 not worth more than a bare mention

3 to 20 positive
20 to 150 strong
>150 very strong

Calculating marginal likelihood P(Y |M0),P(Y |M1)
7 / 37
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Hypothesis Testing
Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

Marginal likelihood approximation

P(Y |M0)

H0 : Yi
i.i.d∼ Poi(µ) for unknown µ ∈ (µl , µu)

Setting a prior and integrate out the parameter.
If it is hard to get integral, we can apply Laplace
approximation.

P(Y |M1)

H1 : Yi
i.i.d∼

∫
Poi(µ)f (µ)dµ where support(f ) = (µl , µu)

Applying predictive recursion marginal likelihood
(PRML) algorithm.
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Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

PRML algorithm : Restate the problem
Estimate P(Y |M1)

Calculate
p(Y |M1) =

∫
p(Y |µ)f (µ)dµ

Known :
Likelihood Function : Poisson p(Y |µ)

support of f (·)
Unknown :

Mixture density f (µ)

Mixture model density estimation : PRML
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Bayes Factor
Estimate P(Y |M1) : PRML algorithm
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PRML algorithm
Estimate P(Y |M1)

Calculate p(Y |M1) =
∫

p(Y |µ)f (µ)dµ
Predictive recursion (PR) is an accurate and computationally
efficient algorithm for nonparametric estimation of mixing
densities in mixture model.

Required information :

p(Y |µ) known – Poisson ;
support and continuity properties – Model assumptions.
Pass the information via f0 in initialization and mf (y) in
integral.

Output

Estimation on f (µ)

Estimation on marginal likelihood p(Y |M1)
10 / 37
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Hypothesis Testing
Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

PRML Algorithm
Estimate P(Y |M1)

p(Y |M1) =

∫
p(Y |µ)f (µ)dµ

Input : i.i.d observations Y1, ...,Yn
Output : L =

∏n
i=1 mi(y)

Initialize : f0(µ)– Usually uniformly distributed on the support.
w1, ..,wn ∈ (0,1) – wi = 1

1+i ;
∑∞

i=1 wi =∞,
∑∞

i=1 w2
i <∞

For i = 1,...,n :

mi(y) =

∫
p(Yi |µ)fi−1(µ)dµ =

m∑
k=1

skp(Yi |µk )fi−1(µk )

fi(µ) = (1− wi)fi−1(µ) + wip(Yi |µ)fi−1(µ)/mi(y)

11 / 37
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Hypothesis Testing
Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

PRML Algorithm : Permutation Version
Estimate P(Y |M1)

1 dataset→ 1 estimator L
1 dataset→ shuffle→ 10 datasets→ 10 estimator
L1, ...,L10 → average→ Lp
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Hypothesis Testing
Bayes Factor
Estimate P(Y |M1) : PRML algorithm
Estimate P(Y |M0)

Estimate P(Y |M0)

Consider
p(Y |M0) =

∫
p(Y |µ)f (µ)dµ

Setting a prior and integrate out the parameter.
Uniform prior : Unif [µl , µu]∫ µu

µl

∏n
i=1 dpoi(Yi |µ)× 1

µu−µl
dµ

For unknown µl , µu, use robust estimator
µ̂l = Y0.25 − α× IQR
µ̂u = Y0.75 + α× IQR
IQR = Y0.75 − Y0.25
Simulation shows the performance of PRML is not sensitive
to parameter α
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Pearson χ2 goodness of fit test
Simulation Result

Pearson χ2 goodness of fit test

H0 : Yi
i.i.d∼ Poi(µ) for µ ∈ (µl , µu)

H0 : Yi
i.i.d∼ Poi(µ̂)

X =
∑

i

(Oi − Ei)
2

Ei

X ∼ χ2
df

approximate X using Monte Carlo p-value calculation

14 / 37
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Testing Poisson versus Poisson mixtures

Testing Poisson versus Poisson mixture

H0 : Yi
i.i.d∼ Poi(240)

H1 : Yi
i.i.d∼

∫ 300

150
Poi(µ)gamma[150,300](µ|480,2)dµ

Generate datasets with size N = 200, half comes from
Poisson and half comes from Poisson mixture.

15 / 37
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Simulation Result
Testing Poisson versus Poisson mixtures

FIGURE – Plots of the AUC. x-axis indicates different sample size
n = 25,50,100. Different colors indicate different methods. Different
shapes of the point indicate different value for α.
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Simulation Result
Testing Poisson versus Poisson mixtures

PRML, PPRML testing perform much better than tradition
χ2 test
As sample size increases, the performance improves.
PPRML is much stable than PRML testing.

Comments
Traditional testing procedure based on p-value sets too general
alternative hypothesis containing too large "model space",
leading to a conservative decision, or we say a loss of power
(or sensitivity).
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Simulation Result
Poisson versus Poisson mixed with normal

Testing Poisson versus Poisson mixed with normal

H0 : Yi
i.i.d∼ Poi(240)

H1 : Yi
i.i.d∼ 0.9Poi(240) + 0.1N[0,∞)(240, σ2)

Generate datasets with size N = 200, half comes from
Poisson and half comes from Poisson mixed with normal.

18 / 37
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Simulation Result
Poisson versus Poisson mixed with normal

FIGURE – Plots of the AUC. Different panels indicate different sample
size n. Different colors indicate different methods. Different shapes of
the point indicate different value for α.

19 / 37



Introduction
Testing Poisson versus Poisson mixture

Comparison
Testing between different Poisson mixtures

Pearson χ2 goodness of fit test
Simulation Result

Simulation Result
Poisson versus Poisson mixed with normal

For σ ≤ 15, PRML, PPRML testing perform much worse
than Pearson χ2 testing. For σ > 15, PRML, PPRML
testing perform better than Pearson χ2 testing.
As σ increase, the performances of PRML, PPRML testing
improve.
σ <
√

240(≈ 15.5) – underdispersion model

Comments
When the alternative model is mis-specified (underdispersion
model), PRML, PPRML testing on Poisson versus Poisson
mixtures is not applicable.
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Hypothesis Testing

Y A
j

i.i.d∼ Poi(µA), Y B
j

i.i.d∼ Poi(µB) for unknown µA, µB

Y AB
j

i.i.d∼
∫

Poi(µ)f (µ)dµ with four competing scenarios for
the support of f :

M1(Mixture) : for unknown µ ∈ {µA, µB}
M2(Intermediate) : for unknown
µ ∈ (min(µA, µB),max(µA, µB))
M3(Outside) : for unknown µ ∈ [µl ,min(µA, µB)) or
µ ∈ (max(µA, µB), µu], where known µl , µu indicate the
lower bound and upper bound of µ respectively.
M4(Single) : for µ = µA or µ = µB

Our goal : Choosing the best fit model.

BF12 =
P(Y AB|Mi)

P(Y AB|Mj)

21 / 37
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Four competitive scenarios

FIGURE – Four possible types of Poisson mixtures which spike counts
may exhibit 3

3. Caruso V C, Mohl J T, Glynn C, et al. Single neurons may encode
simultaneous stimuli by switching between activity patterns[J]. Nature
communications, 2018, 9(1) : 2715. 22 / 37
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Estimate P(Y |Mi ) : PRMLG-LP algorithm
Simulation Result

Known and Unknown

Known :
Triplets Data : Y A,Y B,Y AB

Likelihood Function : Poisson
p(Y A|µA),p(Y B|µB),p(Y AB|µAB)
Relationship on support between µA, µB, µAB

Mixture : µAB ∈ {µA, µB}
Intermediate : µAB ∈ (µmin, µmax )
Outside : µAB ∈ [µl , µmin) or µAB ∈ (µmax , µu]
Single µAB = µA or µAB = µB

Unknown :
Parameters : µA, µB, µAB

Mixture density f (µAB|µA, µB)

Goal : Marginal likelihood

p(Y AB|M,Y A,Y B) =

∫
Θ

p(Y AB|θ,M)p(θ|Y A,Y B)dθ
23 / 37
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Estimate P(Y |Mi) : Laplace Approximation

p(Y AB|M,Y A,Y B) =
∫

Θ p(Y AB|θ,M)p(θ|Y A,Y B)dθ
=

∫
Θ

∫
p(Y AB|µAB)f (µAB|θ)dµABp(θ|Y A,Y B)dθ

≈ (2π)k/2|Σ̂|1/2p(Y AB|M, θ̂)p(θ̂|Y A,Y B)

With Laplace approximation, we have

p(Y AB|M,Y A,Y B) ≈ p(Y AB|M, θ̂)p(θ̂|Y A,Y B)

N(θ̂|θ̂, Σ̂)

where k = dim(θ)

θ̂ = argmax
θ

logp(Y AB|M, θ)p(θ|Y A,Y B)

Σ̂ = {−O2logp(Y AB|M, θ)p(θ|Y A,Y B)|θ=θ̂}
−1

24 / 37
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Estimate P(Y |Mi) : optimization problem

Object function : l(θ) = logp(Y AB|M, θ)p(θ|Y A,Y B)

Hessian Matrix : H = O2l(θ)

Marginal likelihood estimator :

p(Y AB|M,Y A,Y B) ≈ (2π)k/2| − H|1/2el(θ̂)

If we provide the gradient Ol(µA, µB), the computation
could be eased a lot.
PRML gradient algorithm (PRMLG) : calculate gradient in
each recursion without significant computation increase.
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Estimate P(Y |Mi) :PRMLG algorithm

p(Y AB|µA, µB,M) =
∫

p(Y AB|µAB)f (µAB|µA, µB)dµAB

Input : i.i.d observations Y1, ...,Yn
Output : logL =

∑n
i=1 logmi(y), OlogL =

∑n
i=1 Ologmi,θ(Yi)

Initialize : f0(µAB|µA, µB),Of0,θ, weights w1, ..,wn ∈ (0,1)
For i = 1,...,n :

mi(y) =

∫
p(Y AB

i |µAB)fi−1(µAB)dµAB

fi(µAB) = (1− wi)fi−1(µAB) + wip(Y AB
i |µAB)fi−1(µAB)/mi(y)

Ologmi,θ(Yi) =

∫
G(θ,u)dµ(u)/mi,θ(Yi)

Ofi,θ(u) = (1− wi)Ofi−1,θ(u) + wi
G(θ,u)− p(Yi |θ,u)fi−1,θ(u)Ologmi,θ(Yi)

mi,θ(Yi)

26 / 37
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Estimate P(Y |Mi) : specify p(Y AB|M, θ) – PRML

support and continuity properties – Model assumptions.

Model Support f0 mf (y)

Mixture {µA, µB} (0.5,0.5)
∑

A,B p(Y AB
i |µAB)fi−1(µ′)

Intermediate (µmin, µmax ) Unif (µmin, µmax )
∫ µmax
µmin

p(Y AB
i |µ′)fi−1(µ′)dµ′

OutsideA (µl , µmin) Unif (µl , µmin)
∫ µmin
µl

p(Y AB
i |µ′)fi−1(µ′)dµ′

OutsideB (µmax , µu) Unif (µmin, µu)
∫ µu
µmax

p(Y AB
i |µ′)fi−1(µ′)dµ′

SingleA {µA} 1 p(Y AB
i |µAB)fi−1(µA)

SingleB {µB} 1 p(Y AB
i |µAB)fi−1(µB)

TABLE – PRML setting under different model assumptions
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Estimate P(Y |Mi) : Reparameterization

Model Reparameterization Support
Mixture µAB = h(z) = µmin + z(µmax − µmin) {0,1}

Intermediate µAB = h(z) = µmin + z(µmax − µmin) [0,1]
OutsideA µAB = h(z) = µl + z(µA − µl) [0,1]
OutsideB µAB = h(z) = µB + z(µu − µB) [0,1]

TABLE – Reparameterization for PRMLG algorithm

Model Restriction Reparameterization
Mixture µA, µB > 0 θ = (log(µA), log(µB))

Intermediate 0 < µmin < µmax θ = (log(µmin), log(µmax ))
OutsideA 0 < µl < µA θ = log(µA − µl)

OutsideB 0 < µB < µu θ = logit(µ
B

µu
)

SingleA µA > 0 θ = log(µA)
SingleB µB > 0 θ = log(µB)

TABLE – Reparameterization for optimization 28 / 37
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Simulation Setting

Generate N = 100 samples for each model. Set µA = 150,
µB = 300, sample size n = 25,50.

Generate Y A ∼ Poi(µA) with nA = 1.5n ; Y B ∼ Poi(µB)
with nB = 1.2n.
Generate Y AB with sample size n.

Mixture : Y AB ∼ αPoi(µA) + (1− α)Poi(µB) with α = 0.5 ;
Intermediate : Y AB ∼

∫
Poi(µ)Ga[180,270](µ|144,0.6)dµ ;

Outside B : generate Y AB ∼ Poi(400) ;
Outside A : generate
Y AB ∼

∫
Poi(µ)Ga[30,120](µ|20.25,0.225)dµ.

Single A : generate Y AB ∼ Poi(150) ;
Single B : generate Y AB ∼ Poi(300).

For estimation, consider µl = 30, µu = 600, nGQ = 20,
nP = 100. For PRML-LP, set conjugate prior rA = 15, sA = 0.1,
rB = 30, sB = 0.1 ; initial value µA

0 = 120, µB
0 = 330.
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Estimate P(Y |Mi ) : PRMLG-LP algorithm
Simulation Result

Testing between four Poisson mixtures

FIGURE – Bayes Factor with sample size n = 25.
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FIGURE – Bayes Factor with sample size n = 50.
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Estimate P(Y |Mi) : Introduce parameter e

Model Reparameterization Support
Mixture µAB = h(z) = µmin + z(µmax − µmin) {0,1}

Intermediate µAB = h(z) = µmin + z(µmax − µmin) [0,1]

TABLE – Reparameterization for PRMLG algorithm under e = 0

Model Reparameterization Support
Mixture µAB = h(z) = µmin + z(µmax − µmin) {e,1− e}

Intermediate µAB = h(z) = µmin + z(µmax − µmin) [e,1− e]

TABLE – Reparameterization for PRMLG algorithm under e
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Simulation result

As sample size n increase, the performances of our
proposed testing would get improved.
PRML-LP and PPRML-LP perform as well as the
benchmark method. They can identify these four Poisson
mixtures with strong evidence except for distinguishing
mixture, intermediate and single.
This is due to the specification of the continuity of the
domain of µ.
With introduce parameter e to define mixture and single
more clearly, our proposed testing (PRML-LP and
PPRML-LP) can distinguish single, mixture and
intermediate with strong evidence (especially when
sample size is large).
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Conclusion

Pros
Testing Poisson versus Poisson mixture
Testing between different Poisson mixtures

Cons
Misspecification of model
Choice of wi remains openinng question
Normality assumption
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