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Background

Non-Poisson behavior

@ In neuroscience, spike counts are usually modeled as
Poisson distribution for simplicity.

@ Non-Poisson behavior is to be expected and has been
documented under many situations.

e The stimuli or the internal state of the subject may change
over time and vary from trial to trial.
e "refractory period”

1. Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of
neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.
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Non-Poisson behavior

@ In neuroscience, spike counts are usually modeled as
Poisson distribution for simplicity.
@ Non-Poisson behavior is to be expected and has been
documented under many situations.
e The stimuli or the internal state of the subject may change
over time and vary from trial to trial.
e "refractory period”
@ Poisson mixtures attract increasing attention.
e It can be seen as a generalized version of Poisson

distribution.
o |t offers a rich class of alternatives to the Poisson

distribution.

1. Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of
neuronal data[J]. Journal of neurophysiology, 2005, 94(1) : 8-25.
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Background

Unsuitable Poisson assumption

@ Testing Poisson versus Poisson mixtures

e Unsuitable model assumption may lead to distortion of
inference.
o Need to filter out non-Poisson behavior trials.

@ Traditional testing procedure : 2 goodness of fit test
e Whether 2 test can give us Poisson-like data ?
o Is there better method for this ?
@ Bayesian perspective : Predictive recursion marginal
likelihood (PRML) testing 2
e Better performance as measured by ROC-AUC
e Testing between different types of Poisson mixtures

2. Martin R, Tokdar S T. Semiparametric inference in mixture models with
predictive recursion marginal likelihood[J]. Biometrika, 20115 98(3) : 567-582.
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Poisson and Poisson mixture

Poisson

lld

Yi = Poi(p), 1 € (pu, pu)

Poisson mixture

Y, "% / Poi()f(1)dpe, support(f) = (s, 1)

Or
Y//d

Poi(pi), -¥df

@ A generalized version of Poisson distribution
@ A rich class of alternatives to the Poisson distribution
@ An overdispersion model
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Hypothesis Testing
Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|M;) : PRML algorithm

Estimate P(Y|Mp)

Hypothesis Testing

Consider the data Y;fori=1,...,n,
e Hy:Y, i Poi() for unknown p € (py, peu)
o Hi: ;"% [ Poi(u)f(1)d where support(f) = (s, 1)

@ Bayes Factor : % - PRML algorithm

@ p value : x? goodness of fit test
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Testing Poisson versus Poisson mixture Bayes Factor
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Bayes Factor
Bayes Factor= P(Y|M,)/P(Y|M;)

Bayes’ Factor : Ratio of marginal likelihood based on
corresponding model assumption.
P(Y|Mo)
BF =
P(Y|My)
The larger the Bayes’ Factor, the stronger evidence showing
Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF Strength of evidence
1t03 not worth more than a bare mention
310 20 positive
20to 150 strong
>150 very strong

Calculating marginal likelihood P(Y|M;), P(Y|M;)
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Estimate P(Y|Mp)

Marginal likelihood approximation

P(Y|Mo)

@ Hy:Y, L Poi() for unknown p € (py, pew)
@ Setting a prior and integrate out the parameter.

@ If it is hard to get integral, we can apply Laplace
approximation.




Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|M;) : PRML algorithm
Estimate P(Y|Mp)

Marginal likelihood approximation

@ Hy:Y, L Poi() for unknown p € (py, pew)
@ Setting a prior and integrate out the parameter.

@ If it is hard to get integral, we can apply Laplace
approximation.

o Hy: ;"™ [ Poi(u)f(;1)du where support(f) = (i, juu)
@ Applying predictive recursion marginal likelihood
(PRML) algorithm.




Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|My) : PRML algorithm
Estimate P(Y|Mp)

PRML algorithm : Restate the problem

Estimate P(Y|M;)

Calculate
p(YIM) = [ p(YI)f()dl

Known :
@ Likelihood Function : Poisson p(Y|u)
@ support of f(-)
Unknown :
@ Mixture density f(u)
Mixture model density estimation : PRML



Hypothesis Testing
Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|My) : PRML algorithm

Estimate P(Y|Mp)

PRML algorithm

Estimate P(Y|M;)

Calculate p(Y|My) = [ p(Y|u)f(1)dp

Predictive recursion (PR) is an accurate and computationally
efficient algorithm for nonparametric estimation of mixing
densities in mixture model.

Required information :
@ p(Y|un) known — Poisson;;

@ support and continuity properties — Model assumptions.
Pass the information via f; in initialization and my(y) in
integral.

@ Estimation on 7(u)
@ Estimation on marginal likelihood p(Y|M;)

10/37



Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|My) : PRML algorithm
Estimate P(Y|Mp)

PRML Algorithm

Estimate P(Y|M;)

p(YIM) = [ p(Yl) ()l

Input : i.i.d observations Yi, ..., Y,
Output : L = [, mi(y)
Initialize : (1)

Wi, ..,wp € (0,1)

Fori=1,...,n:

mi(y) = /D(Yi\u)h(u)dﬂ

filp) = (1 = wi)fioq () + wip(Yilp) fia(p)/mi(y)
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PRML Algorithm

Estimate P(Y|M;)

p(YIM) = [ p(Yl) ()l

Input : i.i.d observations Yi, ..., Y,

Output : L = [, mi(y)

Initialize : f(1.)— Usually uniformly distributed on the support.
Wi, ., Wy € (0,1) = wj = 1153 7wy = 00, 372, w2 < o0
Fori=1,...,n:
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PRML Algorithm

Estimate P(Y|M;)

p(YIM) = [ p(Yl) ()l

Input : i.i.d observations Yi, ..., Y,

Output : L = [, mi(y)

Initialize : f(1.)— Usually uniformly distributed on the support.
Wi, ., Wy € (0,1) = wj = 1153 7wy = 00, 372, w2 < o0
Fori=1,...,n:

M) = [ POU-1(n)le = D sp( Vi)t 1)
k=1

filp) = (1 = wi)fiiq () + wip(Yilp) fia(p)/mi(y)

11/37



Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|My) : PRML algorithm
Estimate P(Y|Mp)

PRML Algorithm : Permutation Version

Estimate P(Y|M;)

@ 1 dataset — 1 estimator L

@ 1 dataset — shuffle — 10 datasets — 10 estimator
Ly,...,L1o — average — L,

12/37



Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|M;) : PRML algorithm
Estimate P(Y|Mp)

Estimate P(Y|Mp)

Consider
p(YIMp) = / P(Y 1) (1)

@ Setting a prior and integrate out the parameter.
e Uniform prior : Unif[uy, pu]
o [1TI}y dpoi(Yilu) x -1 -di

Hu—H

13/37



Hypothesis Testing

Testing Poisson versus Poisson mixture Bayes Factor
Estimate P(Y|M;) : PRML algorithm
Estimate P(Y|Mp)

Estimate P(Y|Mp)

Consider
p(YIMp) = / P(Y 1) (1)

@ Setting a prior and integrate out the parameter.
e Uniform prior : Unif[uy, pu]
o [ Ty dpoi(Yily) x -t dn
@ For unknown py, gy, Use robust estimator
o ,&/ = Y0A25 —a x IQR
° [y = Yo75 + a x IQR
e IQR = Yo.75 — Yo.25
e Simulation shows the performance of PRML is not sensitive
to parameter o

13/37



Pearson \2 goodness of fit test
Comparison Simulation Result

Pearson x? goodness of fit test

® Ho: ;"% Poi(y) for 1 € (uy, 1)
ii.d

@ Hy:Y; ~ Poi(ji)
° 2
(O - Ej)
X = Z,:E,-
o X ~ Xg/f

@ approximate X using Monte Carlo p-value calculation

14/37
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Simulation Result

Testing Poisson versus Poisson mixtures

Testing Poisson versus Poisson mixture

Ho : Y; "¢ Poi(240)
ey e [ b 480,2)d
R 0i( 1) gammayyso zoo) (14480, 2)du

@ Generate datasets with size N = 200, half comes from
Poisson and half comes from Poisson mixture.

15/37
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Simulation Result

Testing Poisson versus Poisson mixtures
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FIGURE — Plots of the AUC. x-axis indicates different sample size
n = 25,50, 100. Different colors indicate different methods. Different
shapes of the point indicate different value for «.
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Pearson \2 goodness of fit test
Comparison Simulation Result

Simulation Result

Testing Poisson versus Poisson mixtures

@ PRML, PPRML testing perform much better than tradition
2
x“ test

@ As sample size increases, the performance improves.
@ PPRML is much stable than PRML testing.

Traditional testing procedure based on p-value sets too general
alternative hypothesis containing too large "model space”,
leading to a conservative decision, or we say a loss of power
(or sensitivity).

17/37



Pearson \2 goodness of fit test
Comparison Simulation Result

Simulation Result

Poisson versus Poisson mixed with normal

Testing Poisson versus Poisson mixed with normal

lld

Hy : Y Poi(240)

//d

Hi : Y; "% 0.9P0i(240) + 0.1Nj o) (240, o2)

@ Generate datasets with size N = 200, half comes from
Poisson and half comes from Poisson mixed with normal.

18/37



Pearson \2 goodness of fit test
Comparison Simulation Result

Simulation Result

Poisson versus Poisson mixed with normal

method

Chisq_MC
PPRML
PRML

5 2 5 0 15 20 25
sd

FIGURE — Plots of the AUC. Different panels indicate different sample

size n. Different colors indicate different methods. Different shapes of
the point indicate different value for a.
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Pearson \2 goodness of fit test
Comparison Simulation Result

Simulation Result

Poisson versus Poisson mixed with normal

@ For o < 15, PRML, PPRML testing perform much worse
than Pearson 2 testing. For o > 15, PRML, PPRML
testing perform better than Pearson x? testing.

@ As o increase, the performances of PRML, PPRML testing
improve.

@ 0 < v/240(=~ 15.5) — underdispersion model

When the alternative model is mis-specified (underdispersion
model), PRML, PPRML testing on Poisson versus Poisson
mixtures is not applicable.

20/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Hypothesis Testing

° Y/ "X Poi(pA), y? "% Poi(1.B) for unknown 1A, 1B

° Y/.AB id [ Poi(u)f(1)du with four competing scenarios for
the support of f :

M; (Mixture) : for unknown p € {p#, 18}
Ma(Intermediate) : for unknown

p € (min(u?, u®), max(uA, 1))

Ms(Outside) : for unknown € [u, min(u?, 1B)) or

w € (max(p?, 1B), ], where known 4y, iy, indicate the
lower bound and upper bound of . respectively.
M,(Single) : for u = p# or = B

@ Our goal : Choosing the best fit model.

P(YA51M;)

21/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Four competitive scenarios

a  Mixture € outside
fag = 2POI(A) + (1 =2)Poi() fap = POI(A8): ;48 > max(;*,78) fag = POI(48): A8 <min(iA, /%)
= = Single A: Poi(i)
[\ == SingleB: Poi(i®
z ¢\ DuslAB iy g &
- AR 3 3
2 ' / € €
& JW & &
A TR
Spike count Spike count Spike count
b nemedate 4 singe
fag = POI(iA + (1-2)78) fre = PoiCA) fro = Poi(®)
z z | z i \
3 3 N 2 Il
3 3 . g .
g 8 £ X e (Y
L2 & / 4 . ¢ 5
N '
4 - - -)\ > oo b S
Spike count Spike count Spike count

FIGURE — Four possible types of Poisson mixtures which spike counts
may exhibit 3

3. Caruso V C, Mohl J T, Glynn C, et al. Single neurons may encode
simultaneous stimuli by switching between activity patterns[J]. Nature
communications, 2018, 9(1) : 2715. 00/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Known and Unknown

Known :
@ Triplets Data : YA, YB yAB
@ Likelihood Function : Poisson
p(YA1?), p(YB|15), p(YAB114P)
@ Relationship on support between 1A, 1.2, /AP
e Mixture : u*8 € {p#, 1B}
o Intermediate : 18 € (pimin, ftmax)
e Outside : 8 € [1y, pumin) OF 1B € (pumax, 1]
e Single y#8 = pA or A8 = 1B
Unknown :
@ Parameters : /A, 1B, /A8
@ Mixture density (18|14, 115)
Goal : Marginal likelihood

p(Y*B|M, YA, YB) = /e p(Y?816, M)p(8] Y2, YB)d

23/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Estimate P(Y|M;) : Laplace Approximation

p(YBIM, YA, Y5)

Jo PLYBJ6, M)p(6] Y, YB)do
p YAB NAB fMAB 0 duABp 0 yA, YB\do
S}
~ @)V Rp(YABIM, 0)p(0] YA, YP)

With Laplace approximation, we have

p(Y*BIM, YA, YB) ~

p(YABIM, 6)p(d] YA, YB)
0,3

(A)

Q:»

where k = dim(0)

A

0 = argmaxlogp(Y*B|M, 0)p(0|Y*, YB)
0

£ = {~v2logp(Y*8|M, )p(8] Y2, Y®)|,_} !

24/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm

Testing between different Poisson mixtures Sl Eiem (Resui

Estimate P(Y|M;) : optimization problem

Object function : 1(6) = logp(YAB|M, 0)p(6] YA, YB)
Hessian Matrix : H = v2/(6)
Marginal likelihood estimator :

P(YAE|M, YA, YE) ~ (2m)/2| - H]'/26/®)
@ If we provide the gradient , the computation

could be eased a lot.

@ PRML gradient algorithm (PRMLG) : calculate gradient in
each recursion without significant computation increase.
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Estimate P(Y|M;) :PRMLG algorithm

p(YAB|uA, 1B M) = [ p(YA8|AB)F(AB A, 1) dp P
Input : i.i.d observations Yi, ..., Y,

Output : logL = Y"1, logm;(y),
Initialize : f, (18|14, 1B), , weights wy, .., w, € (0,1)
Fori=1,..,n

mily) = / D(YB1 BY o (uB)

F("B) = (1 — W) (1B + wip( YA A8 (u8) /mi(y)

26/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm

Simulation Result

Testing between different Poisson mixtures

Estimate P(Y|M,) : specify p(YAB|M, #) — PRML

support and continuity properties — Model assumptions.

Model Support fo me(y)

Mixture {1*, 1B} (0.5,0.5) > a8 P(Y/ P11 B) g (1)
Intermediate | (min, imax)  Unif(fimin, fimax) ﬂjx p(YAB|u) iy (u)dp!
OutsideA (141, tmin) Unif (1, pmin) f”’"’" P(Y/ Bl )i ()i
P(YAB| ) fiq (i) !

OutsideB (Kmax; Hu) Unif (2min, fiu) ,umax
SingleA {n"} 1 P(YA%| i B) iy (1)
SingleB (1%} 1 P(Y/B|uAB)f_1 (148)

TABLE — PRML setting under different model assumptions

27/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Estimate P(Y|M;) : Reparameterization

Model Reparameterization Support

Mixture B = h(z) = pmin + 2(pmax — ptmin) ~ {0,1}

Intermediate | 18 = h(z) = pmin + Z(max — ptmin) [0, 1]
OutsideA B = h(z) =+ z(p? — 1) [0,1]
OutsideB pB = h(z) = B + z(uy — pg) [0,1]

TABLE — Reparameterization for PRMLG algorithm

Model Restriction Reparameterization
Mixture pw? uB >0 9 = (log(1?), log(1:B))
Intermediate | 0 < pimin < pmax 0 = (109(1imin); 109(11max))
OutsideA 0<p<ph 0 = log(pu” — 1)

OutsideB 0 < uB <y 0= /ogit(fj—j)
SingleA pA >0 6 = log(p?)
SingleB uB >0 0 = log(1B)

TABLE — Reparameterization for optimization 28/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Simulation Setting

Generate N = 100 samples for each model. Set 4 = 150,
upg = 300, sample size n = 25, 50.

@ Generate YA ~ Poi(u”) with n* = 1.5n; YB ~ Poi(1.5)

with n® = 1.2n.

@ Generate Y48 with sample size n.
Mixture : YAB ~ aPoi(114) + (1 — a)Poi(ug) with or = 0.5;
Intermediate : Y#8 ~ [ Poi(u)Gayiso 270)(11|144,0.6)dy;
Outside B : generate Y48 ~ Poi(400);
QOutside A : generate
YAB ~ f POI Ga[30 120](,LL|20 25 0. 225)d
Single A : generate YA8 ~ Poi(150);

e Single B : generate Y#8 ~ P0i(300).

For estimation, consider x; = 30, uy, = 600, NnGQ = 20,
nP = 100. For PRML-LP, set conjugate prior r4 = 15, s = 0.1,
rg = 30, s = 0.1; initial value xfl = 120, u§ = 330.

29/37



Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Testing between four Poisson mixtures
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FIGURE — Bayes Factor with sample size n = 25.
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Testing between four Poisson mixtures

intermediate

method
PPRML
PPRML_LP
PRML_LP

outsideB
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B

[]

+ outsideB.
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level
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FIGURE — Bayes Factor with sample size n = 50.
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Estimate P(Y|M;) : Introduce parameter e

Model Reparameterization Support

Mixture MAB = h(Z) = min + Z(Mmax - Hmin) {O: 1}
Intermediate | 18 = h(2) = pmin + Z(ttmax — pmin) [0, 1]

TABLE — Reparameterization for PRMLG algorithm under e = 0

Model Reparameterization Support
Mixture IUAB = h(z) = pimin + Z(ttmax — kmin) {€,1 — €}
Intermediate | #8 = h(z) = pmin + Z(ftmax — kmin)  [€,1 — €]

TABLE — Reparameterization for PRMLG algorithm under e

32/37



Hypothesis Testing

Estimate P(Y|M;) : PRMLG-LP algorithm

Simulation Result

Testing between different Poisson mixtures

Effect of parameter e

0.00

mixture singleA singleB

3 20 150 1 3 20 150 1 3 20 150
level

FIGURE — Bayes Factor sample size n =25
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® inermediate

A mixture

method
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PRML_LP
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Effect of parameter e
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FIGURE — Bayes Factor sample size n =50
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Simulation result

@ As sample size n increase, the performances of our
proposed testing would get improved.

@ PRML-LP and PPRML-LP perform as well as the
benchmark method. They can identify these four Poisson
mixtures with strong evidence except for distinguishing
mixture, intermediate and single.

@ This is due to the specification of the continuity of the
domain of p.

@ With introduce parameter e to define mixture and single
more clearly, our proposed testing (PRML-LP and
PPRML-LP) can distinguish single, mixture and
intermediate with strong evidence (especially when
sample size is large).
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Hypothesis Testing
Estimate P(Y|M;) : PRMLG-LP algorithm
Simulation Result

Testing between different Poisson mixtures

Conclusion

@ Testing Poisson versus Poisson mixture
@ Testing between different Poisson mixtures

@ Misspecification of model
@ Choice of w; remains openinng question
@ Normality assumption
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