Modeling Neural Population Coordination via a Block Correlation Matrix Yunran Chen and Surya T. Tokdar
Department of Statistical Science, Duke University, Durham, NC 27708, USA

Research Question

- Estimation of a block correlation matrix
- Unknown block structure: grouping w.r.t.

value

 variables- Flexibility: off-diagonal correlation $\in(-1,1)$
- Interpretability: model assumptions + priors
- Statistical efficiency: large p small n cases
- Computational efficiency: conjugate priors

Fig. 1: An example of a block correlation matrix (50 variables 4 blocks)

Motivation

Phase 1 (Single neuron fluctuation)
'Mixture': within-trial/ trial-
wise turn-taking dynamics 'Mixture': within-trial/ trial-
wise turn-taking dynamics
bluladuldaduld

 "AB"trial 1 Mulduld

Malua

"AB"trial 3
Phase 2 (Neural Population Coordination)
0000000000 Synchronously
Grouping Asynchronously L_u

Method: Bayesian Block Correlation Matrix Estimation

—Bayesian Model: Mixture of Finite Mixtures + Canonical Representation Groups allocation: Mixture of Finite Mixtures (MFM) (Miller and Harrison, 2018)
\mathcal{C} denotes partition of $[N]$ induced by S_{1}, \ldots, S_{N} :
$K \sim p_{K}$, where p_{K} is a p.m.f on $\{1,2, \ldots\}$, where we consider $K-1 \sim \operatorname{Pois}(1)$
Group allocation

$$
S_{i} \in\{1, \ldots, K\}
$$

\qquad $\left(\pi_{1}, \ldots, \pi_{k}\right) \sim \operatorname{Dir}_{k}(\gamma, \ldots, \gamma)$ given $K=k$

$$
\tilde{Y}=P Y, \quad \tilde{Y} \sim N(0, \Sigma)
$$

Permuted Daıa.
Block Covariance Matrix:

$$
\text { x: } \Sigma=\left(\begin{array}{cccc}
\Sigma_{[1,1]} & \Sigma_{[1,2]} & \ldots & \Sigma_{[1, K]} \\
\Sigma_{[2,1]} & \Sigma_{[2,2]} & \ldots & \Sigma_{[2, K]} \\
\vdots & & \ddots & \\
\Sigma_{[K, 1]} & \Sigma_{[K, 2]} & \ldots & \Sigma_{[K, K]}
\end{array}\right), \Sigma_{[i, i]}=\left(\begin{array}{cccc}
\sigma_{i}^{2} & \sigma_{i i} & \ldots & \sigma_{i i} \\
\sigma_{i i} & \sigma_{i}^{2} & \ldots & \sigma_{i i} \\
\vdots & & \ddots & \\
\sigma_{i i} & \sigma_{i i} & \ldots & \sigma_{i}^{2}
\end{array}\right), \Sigma_{[i, j]}=\left(\begin{array}{c}
\sigma_{i j} \\
\vdots \\
\sigma_{i j}
\end{array}\right.
$$

