Modeling Neural Population Coordination via a Block Correlation Matrix Yunran Chen and Surya T. Tokdar Department of Statistical Science, Duke University, Durham, NC 27708, USA

· · · ·			Phase "A" t	1 (Sing	gle neuro "B" ti	D
			"A" t	rial 3	Mixtu	ria
		\Λ/;+			turn-t	a
		Acro	nin-tria	"AB" trial 1 "AB" trial 2 "AB" trial 3		
	Met	hod: E	Bayes	sian	Block	
PeCa	ermute anonic	ed Data: cal Repres	$\tilde{Y} = P$	Y, \tilde{Y}	$\tilde{Z} \sim N(0)$), V
σ_i^2	σ_{ii}		$ u_n$	ν_{n_1}		
\sum =						
	σ_{ij}					١
	Block		ce		rthonorm	51 5
 Correlation Watrix maintains SAME & Interpretation: A Representatives 						
			λ Rep	olicates))
			Q Rot	ation	$v_{n_k} =$	=
• Lo	g like	lihood: –	$rac{NJ}{2}\log 2$	$\pi - \frac{J}{2}\log \left(\frac{J}{2} - \frac{J}{2} \right)$	$ A - \frac{1}{2} \sum_{j=1}^{J}$	
• Co	onjuga	ate Priors	•	A	$4 \mathcal{C} \sim IW$	(1
• Gr	oups	allocation	h: Mixt	ure of	Finite M	i>
		\mathcal{C} den	otes pa	rtition	of $[N]$ in	d
$K \sim p_K$, where p_K is a p.m.f c						
Group allocation						

 $S_i \in \{1, \ldots, K\}$

on fluctuation)

Phase 2 (Neural Population Coordination)

Correlation Matrix Estimation r13 r12 r11 A $\lambda_1 I_{n_1-1}$ r22 r21 r23 density ⁵ r32 r33 r31 $\lambda_K I_{n_K-1}$ Orthonormal Pseudo-diagonal corr p100k8 p20k2 p100k14 p50k4 $\int_{1}^{J} \eta_{j(0)}^{*'} A^{-1} \eta_{j(0)}^{*} - \frac{J}{2} \sum_{k=1}^{K} (n_{k} - 1) \log \lambda_{k} - \frac{1}{2} \sum_{j=1}^{J} \sum_{k=1}^{K} \eta_{j(k)}^{*'} \eta_{j(k)}^{*} / \lambda_{k}, \text{ where}$ **000000** $\lambda_k \sim (iid) IG(a_\lambda, b_\lambda).$

- variables

Research Question

 Block correlation matrix estimation Unknown block structure: grouping w.r.t.

• Flexibility: off-diagonal correlation \in (-1,1) Interpretability: model assumptions + priors • Statistical efficiency: large p small n cases Computational efficiency: conjugate priors

Fig. 2: Examples of induced priors for block correlation under different group allocation

 Estimation accuracy: BCM outperforms other alternatives except for situations with large p/k ratio (measured by Frobenius Dist)

• Grouping:

BCM recovers the true block structure in a decent way (smoothing/denoise) even under small n large p cases. (p=100, n=20)